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Abstract. We present a novel global algorithm for parallel computers,
suitable to solve nonlinear boundary value problems depending on one
parameter. The existing scanning and solution following algorithms are
extended by a gradient method which is performed on an artificial po-
tential created from the equation system. All three components of the
algorithm can be parallelized and thus used in a GRID network. We
validate our algorithms on a few small examples.

1 Introduction

Engineers need a lot of computing power to solve problems about the behaviour
of the reinforced concrete beams on the influence of several forces. [1] These
problems can often be described as boundary value problems (BVP). In this
paper we present a novel method to handle these problems.

The boundary value problems can be traced back to finding the solutions of
a non-linear equation system in a multidimensional space. These solutions are
always a collection one dimensional objects (lines). Once a small part of one of
them is found it can be followed in both directions which is the first component of
our algorithm. [4] We use two methods to find pieces of the solution a stochastic
and a gradient one. [5] The latter is a new method in this field and is performed on
a non-negative potential obtained by the transformation of the equation system,
where the solutions are the minima of the potential with zero values.

The gradient extension does not make the algorithm scan the entire space
much faster instead it can deliver the solutions much faster than the scanning
algorithm. However, in principle we have to scan the whole space to find all
solutions.

The aim of this work is to present the gradient algorithm. We implement the
simplest possible solution to demonstrate the power of the new algorithm. As
the dimension of the GRS [1] gets higher and the scanning of the whole GRS
would need exponentially large times. The gradient algorithm with some extra
calculation need helps to deliver the solutions earlier.
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Fig. 1. Euler problem

2 Boundary value problem

If we get the deformations of the beam as an integration along the length, so
position, forces and moments are known at one end of the beam, we are talking
about an initial value problem (IVP). Most of the cases, the position and/or
forces and/or moments are given in both end of the beam, which transfers it to
a boundary value problem (BVP).

We will illustrate our method on the example of the axially compressed,
uniform, elastic cantilever beam, illustrated in Fig. 1. The ordinary differential
equation describing the shape of the beam in terms of the slope α as a function
of the arclength s was first described by Euler:

EIα′′ + P sin α + Q cosα = 0. (1)

The vertical force Q will be used as a small imperfection parameter which is con-
stant during the loading process. The trajectories of this equation are uniquely
determined by the three scalars α(0), α′(0), and P (the former ones being ‘true’
initial conditions, the latter one a parameter, Q is treated as a constant). How-
ever, we are not interested in all trajectories, only the ones which meet the
boundary conditions α(0) = 0 and α′(L) = 0, which express zero slope at the
left end and zero curvature at the right end of the beam respectively.

If we denote x1 ≡ α′(0), x2 ≡ P , the scalars xi are called global coordinates,
the space spanned by [x1, x2] will be called Global Representation Space (GRS)
of the BVP and we denote its dimension by D. In these problems there are D−1
equations to be solved which results in a line (one dimensional object) as the set
of solutions. The function we have to solve is f1 : α′(L) = 0. This example is a
simple one, in case of more complex problems GRS can have more dimensions,
some of them exceed even the 20th dimension!

In order to solve globally a BVP in moderate dimensions, our algorithm
discretizes the GRS into hypercubes and splits up the cubes into simplices (that
are triangles in two dimensions and tetrahedron in three dimensions). [2] The
original IVP (Eq. 1) is solved in each apex of the simplex, and the solution,
if any is determined for each side by a linear interpolation algorithm. Solution
points of all the simplex sides are taken as the global results of the BVP.

An acceleration for simplex algorithm is the path-continuation extension: If
we find a solution anywhere in the GRS, we suppose that this solution con-
tinues in two ways (as it is said, solutions are one-dimensional objects), so we



examine the neighbouring cubes of the solution provider cube to find the solu-
tions sooner. Simplex algorithm extended by path-continuation method is called
hybrid algorithm.

The parallel version of the hybrid algorithm [3] is implemented in the fol-
lowing way: The space is divided into large primary hypercubes (consisting of lD

hypercubes) which are handled by a slave processes in order to reduce the com-
munication need among processes. The primary hypercubes are not distributed
arbitrarily to the slaves but a weighting is applied. If a solution was found to
leave a primary hypercube on a specific side the neighbouring primary hypercube
is marked with the maximum weight. On the other hand primary hypercubes
with the most unchecked neighbours have higher weights in order to scan more
distant hypercubes earlier and thus find the solutions earlier.

As number of dimensions increase, size of GRS increases exponentially. Hy-
brid algorithm is good enough for problems with dimensions not higher than
about 6. Problems with higher dimensions cannot be handled by this algorithm.

3 Gradient Method

There is more information in the functions than it is used by hybrid algorithm.
The main new idea is that we construct a potential which has minima at the
solutions:

U(p, x1, x2, . . . , xn) =
n∑

i=1

cif
2
i (p, x1, x2, . . . , xn), (2)

where ci denote positive constants. The above construction ensures that the
value of U is always non-negative and zero values indicate the solution. Thus a
gradient method may be used to find these points.

The gradient algorithm is implemented to step from every point to the neigh-
bouring hypercube in the direction of the largest gradient. It stops if it would
leave the examined parameter space or if it found a local minimum, where the
U is smaller than in the neighbouring hypercubes. The primary hypercube with
the found local minima is marked with high weight for the hybrid algorithm
irrespect of the value of U .

4 Implementation and Problems

The aim of the present work is to justify the effectiveness of the gradient al-
gorithm without any further optimizations. There are many aspects that may
render this algorithm useless. Since we have no a priori knowledge about the
above potential it may contain too many local minima making the gradient al-
gorithm useless. The different components of fi are in general of different unit
and thus can be of different magnitude which might introduce anomalies. In the
followings we note other optimization or implementation possibilities in parallel
with the present simplest choice of realization.



We have a parallel algorithm where the balance between different slave types
must be synchronized. This requires an elaborate weighting of the unchecked
primary hypercubes as well as a fine tuning of the slave types. We show here
that even the dumbest choice can deliver a considerable performance increase.
At the beginning we let the gradient algorithm run a few times (1 − 10 in our
simple examples) and then we mark with high weight the primary hypercubes
found as local minima by the gradient algorithm to be the first candidates for
the hybrid algorithm then we switch back to the old algorithm.

The same simplicity is followed in choosing the initial points for the gradient
algorithms which is done randomly. Since many gradient runs may find the same
solution in the future it would be important that the starting points are well
distributed in the GRS. In higher dimensions methods of determining attraction
zone by some negative gradient algorithm might be also helpful.

The role of the ci coefficients is to bring the values of the fi of different units
in the same magnitude. This can be done e.g. by an initial scan of the space
where we calculate f in m points and set

ci =


 1

m

m∑

j=1

(
f

(j)
i

)2



−1

(3)

Since there might be huge differences among quarters of the GRS the coef-
ficients should be calculated for the perimeter of each gradient run. An other
possibility is to let ci evolve in time as the gradient algorithm advances but in
this case one has to care about the algorithm making cycles. In our case the best
choice was to take the simplest possibility: ci ≡ 1.

We chose that the gradient method is stepping into the neighbouring hy-
percube in the direction of the largest gradient. This might be inappropriate in
more complex problems where a conventional gradeint method should be used.

In summary the only difference compared to the hybrid algorithm is to run
a few gradient algorithm slaves at the beginning and then switch back to the
old algorithm with the found local minima being the first to be scanned by the
simplex method.

The extra calculation of the gradient algorithm increases the overall compu-
tation need of the algorithm but the solutions may be found earlier. We also note
that the gradient algorithm has much less computation need than the scanning
one. The gradient algorithm generates the function values in the neighbouring
hypercubes of the actual point. There are 2D such points. On the other hand
to test whether a hypercube contains a solution the simplex algorithm has to
calculate the functions at the corners which means 2D function calls. It is also
important to note that in the case of the gradient algorithm we do not check
all the hypercubes of the primary hypercube but we follow the gradient which
means again in average lD−1 factor advantage for the gradient method, where l is
the linear size of the primary hypercube. This means that the gradient method
can be considered instantaneous compared to the scanning algorithm in high
dimensions.
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Fig. 2. Circle problem (a) The continuous line shows the solution curve the squares
indicate the local minima found by the gradient algorithm, the area of the squares is
proportional of its occurrence in the 100 runs. (b) The variation of S in time for both
the gradient and hybrid algorithm. The inset shows the variation of the efficiency with
the percentage of the found solutions.

5 Results

As we already mentioned the aim of the gradient algorithm is not to scan the
GRS in less time but to find the solutions earlier than the stochastic algorithm.
We chose to measure the time by calculating the number of function calls needed
to find a primary hypercube with a solution in it. Measuring the time would be
misleading as more complicated problems have functions with heavy computa-
tion need which requires most of the evaluation time while the simple examples
presented here spend relatively more time for communication etc. Therefore we
measure the time in 1000 function calls and denote it by τ . The time is measured
independently for each slave.

In all test cases we did the following procedure: Two series of runs were done,
one with the gradient algorithm and the other one with the hybrid algorithm.
Each series consisted of 100 runs with different random seeds. We present the
averaged results.

We note by S(τ) the ratio of the found primary hypercubes with solutions
compared to the total one. The efficiency of the gradient algorithm is defined
by the ratio of the time needed to find S part of the solutions with the hybrid
algorithm and with the gradient: G ≡ τhybr(S)/τgrad(S)

The first test we performed is not a real problem. The function was chosen
to be x2 + y2 = 10 which corresponds to no real BVP. The GRS space was set
to the [−10 : 10] × [−10 : 10] space the size of the primary hypercube is 1.5.
The solution is a circle with

√
10 radius (see Fig. 2. (a)). A single gradient algo-

rithm was run at the beginning and only one slave was working. The efficiency
is 1.5 − 2. The time evolution of S for the gradient algorithm is quite linear
indicating a scenario where the gradient algorithm found a solution and then
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Fig. 3. Cantilever beam with Q = 0.1. Graphs are same as in Fig. 2

the path following algorithm completed it. The hybrid algorithm has a curved
shape indicating an exponential distribution of the time when the first point of
the solution was found. The time gain very well corresponds to the average time
needed for the hybrid algorithm to find the first solution.

The second example consist of the already illustrated cantilever problem
with a very small imperfection parameter Q = 0.1. The resulting GRS with
the solution is presented on Fig. 3. Five gradient algorithms were run prior to
the hybrid algorithm and both ran on 5 slaves simultaneously. Due to the small
imperfection the solution line is cut into two distinct parts. The ratio of the
primary hypercubes with solution is lower than before (5.7% instead of 8%). In
spite of this the efficiency [Fig. 3 (b)] is less than in the previous example. This
is due to the fact that the solutions are relatively long lines which takes a long
time to follow. This process can only be done by one or two slaves and the others
are free to look for new solution in a stochastic way. This example emphasizes
the importance of the well planned parallelization of the algorithm.

We present the third example on Fig. 4 which is different from the previous
one only in the imperfection parameter Q = 2 and the number of slaves which
was set to 2. The efficiency changes only little: It gets worse for small S but
gets better for large S. Where the low number of slaves does not let for a free
scanning of GRS while the others are following a solution. On Fig. 4 (a) we can
see that a local minimum with no solution at the point (4.7,−8.4). It is also
visible on the surface map of the potential on Fig. 6 (a). It has a considerable
attraction range but with sufficient gradient runs the solutions are found with
very high probability.

The last example we analyze here is a three dimensional one. The imper-
fection parameter is no longer a constant but may change on condition that its
absolute value equals to |Q|=P . The GRS is 3 dimensional in this example with
Q being the third dimension. The problem was run on two slaves. The solution
probability is 0.6%. The position of the solution is shown on Fig. 5 and 6 (b).
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Fig. 4. Cantilever beam with Q = 2.0. Graphs are same as in Fig. 2
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Fig. 5. Cantilever beam with |Q|=P (three-dimensional GRS). (a) The continuous line
shows the solution curve the points indicate the local minima found by the gradient
algorithm (occurrence is not shown!). (b) Graph is same as in Fig. 2 (b).

It consists of three disjunct branches. The figure 5 also shows the local minima
found by the gradient algorithm where it is obvious that it nicely finds the so-
lution as well as other local minima lines. In spite of these false local minima
the algorithm is very efficient and needs about 3 times less function calls than
the hybrid algorithm to find the majority of the solution, which shows that the
efficiency of the gradient algorithm compared to the hybrid one increases rapidly
with the dimension of the GRS.

6 Conclusion

In this paper we introduced a gradient algorithm to find the solution of bound-
ary value problems faster than by the existing scanning and solution following
hybrid algorithm. We showed that even the easiest implementation of this algo-
rithm brings a considerable time gain. This is achieved despite the fact that the
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Fig. 6. (a) The surface plot of the square root of the potential of the cantilever problem
with Q=2. The monotonic square root function was taken to visually enhance the view
of the potential. The local minimum is shown with a black point. (b) Visualization of
the potential in the 3 dimensional problem. The size of the balls is proportional to the
square root of the potential. The solution is shown with a thick black line.

gradient runs do not deliver solutions but just alter the weighting of the primary
hypercubes of the discretized GRS. We also showed that in high dimensions the
computation need of the gradient algorithm is negligible.

On the other hand we showed that this dump implementation lack many
feature that could make the algorithm run faster. We expect the most efficiency
gain by developing a starting point choosing mechanism and a much better
weighting of the primary hypercubes in parallel with an elaborate selection of
slave types.
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